Vector 2-norm of input (Pythagorean).
With input \(x\), the output is calculated as \(\|x\|_2 = \sqrt{x_{1}^{2} + x_{2}^{2} + ... + x_{N}^{2}}\), where N is the number of vector elements in \(x\).
- Author
- Jorgen Haavind Jensen
- Date
- Q3 2014: Initial version.
Example configuration excerpt
<Lib
LibName = "fhsim_base"
SimObject = "Math/VectorNorm"
Name = "A"
PortWidth = "2"
/>
...
<Connection
A.In = "10,4"
/>
Input Ports
Name | Width | Description |
In | <PortWidth> | The input port |
Output Ports
Name | Width | Description |
Out | <PortWidth> | The norm of "In". |
Configuration parameters
Name | Width | Description |
PortWidth | 1 | The number of elements in the signal. |
Initial conditions
This SimObject contains no initial conditions.
Full example file
<Contents>
<OBJECTS>
<Lib
LibName="base"
SimObject="Math/VectorNorm"
Name="Norm"
PortWidth = "3"
/>
</OBJECTS>
<INTERCONNECTIONS>
<Connection
Norm.In="3,2,0"
/>
</INTERCONNECTIONS>
<INITIALIZATION>
<InitialCondition
/>
</INITIALIZATION>
<INTEGRATION>
<Engine
IntegratorMethod="2"
NumCores="1"
TOutput="0, 3:1:5, 30"
LogStates ="1"
stepsize ="0"
HMax="0.002"
HMin="0.00000001"
AbsTol="1e-3" RelTol="1e-3"
UseRSSNormInsteadOfInfNorm="0"
FileOutput="objects:all"
/>
</INTEGRATION>
</Contents>
This SimObject is referred to as Math/VectorNorm